

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

Libre Space Foundation Contribution Guide

Table of Contents

	Introduction

	Obtain the source code

	Separate the changes

	Quality check of the changes

	Describe the changes

	Create a merge request

	Respond to review comments

	Don’t get discouraged - or impatient

	Sign your work - the Developer’s Certificate of Origin

	References

Introduction

For a person or company who wishes to submit a change to a Libre Space Foundation project source code, the process can sometimes be daunting if you’re not familiar with “the system”.
This document is a collection of suggestions which can greatly increase the chances of your change being accepted.
It is based on Linux kernel patch submission guidelines.

Obtain the source code

All Libre Space Foundation projects code is maintained under Git.
Obtain a copy of the source code using git clone.
Development usually takes place under master or dev branch.

Separate the changes

Make changes as small as possible by separating each logical change into a separate commit.
Such commits are also called atomic.
Atomic commits must be complete and functional.
Small commits make it easier for someone to review by seeing changes incrementally.
It also makes it easier to roll back changes without affecting other changes.

For example, if your changes include both bug fixes and a new feature, separate those changes into two or more commits.
On the other hand, if you make a single change to numerous files, group those changes into a single commit.
Thus a single logical change is contained within a single commit.
The point to remember is that each commit should make an easily understood change that can be verified by reviewers.
Each commit should be justifiable on its own merits.

When creating a merge request from a series of commits, take special care to ensure that the software builds and runs properly after each commit in the series.
Developers using git bisect to track down a problem can end up splitting your merge request at any point; they will not thank you if you introduce bugs in the middle.

If you cannot condense your merge request into a smaller set of commits, then only submit say 15 or so at a time and wait for review and integration.

Never commit binary files.
Once they are part of Git repository history they cannot be removed.

Quality check of the changes

Continuous Integration will check your changes automatically once you create a merge request.
Nevertheless, local quality check should also be done before submitting a merge request.
The checks can include:

	Static code analysis and coverage

	Dynamic code analysis

	Unit testing

	Functional testing

All quality checks must pass for your changes to be merged.

Describe the changes

These are the seven rules of a great Git commit messages:

	Separate subject from body with a blank line

	Limit the subject line to 50 characters (if possible)

	Capitalize the subject line

	Do not end the subject line with a period

	Use the imperative mood in the subject line

	Wrap the body at 72 characters

	Use the body to explain what and why vs. how

See How to Write a Git Commit Message [https://chris.beams.io/posts/git-commit/] by Chris Beams for details.

Try to solve a single problem per each commit.
If your description ends up too long, that’s an indication that you probably need to split up your commit.
See Separate the changes.

Create commit or merge requests descriptions that are self-contained.
This benefits both the maintainers and reviewers.
Always use your real name and e-mail address for committing changes.

If the commit fixes a reported issue, refer to that bug entry by issue number.
The issue will be closed automatically after merge, if it matches this regular expression [https://docs.gitlab.com/ce/user/project/issues/automatic_issue_closing.html].

Create a merge request

A series of loosely related commits can be submitted as a merge request.
Libre Space Foundation projects follow a forking workflow [https://docs.gitlab.com/ce/workflow/forking_workflow.html].
Merge requests must not contain other merge requests; re-base your commits if necessary.

Respond to review comments

Your merge request will almost certainly get comments from reviewers on ways in which it can be improved.
You must respond to those comments; ignoring reviewers is a good way to get ignored in return.
Be sure to tell the reviewers what changes you are making and to thank them for their time.
Code review is a tiring and time-consuming process, and reviewers sometimes get grumpy.
Even in that case, though, respond politely and address the problems they have pointed out.

Don’t get discouraged - or impatient

After you have submitted your merge request, be patient and wait.
Reviewers are busy people and may not get to your merge request right away.
You should receive comments within a week or so.
Wait for a minimum of one week before pinging reviewers - possibly longer during busy times.

Sign your work - the Developer’s Certificate of Origin

To improve tracking of who did what, especially with commits that can percolate to their final resting place in Libre Space Foundation projects code-base through several layers of maintainers, we’ve introduced a “sign-off” procedure on commits.

The sign-off is a simple line at the end of the explanation for the commit, which certifies that you wrote it or otherwise have the right to pass it on as an open-source patch.
The rules are pretty simple:

if you can certify the below:

Developer’s Certificate of Origin 1.1

By making a contribution to this project, I certify that:

a. The contribution was created in whole or in part by me and I have
 the right to submit it under the open source license indicated in
 the LICENSE file; or
b. The contribution is based upon previous work that, to the best of
 my knowledge, is covered under an appropriate open source license
 and I have the right under that license to submit that work with
 modifications, whether created in whole or in part by me, under
 the same open source license (unless I am permitted to submit
 under a different license), as indicated in the LICENSE file; or
c. The contribution was provided directly to me by some other person
 who certified (a), (b) or (c) and I have not modified it.
d. I understand and agree that this project and the contribution are
 public and that a record of the contribution (including all
 personal information I submit with it, including my sign-off) is
 maintained indefinitely and may be redistributed consistent with
 this project or the open source license(s) involved.

then you just add a line saying:

Signed-off-by: Random J Developer <random@developer.example.org>

using your real name (sorry, no pseudonyms or anonymous contributions.)

If you are a maintainer, sometimes you need to slightly modify commits order to merge them.
If you stick strictly to rule (c), you should ask the submitter to rediff, but this is a totally counter-productive waste of time and energy.
Rule (b) allows you to adjust the code, but then it is very impolite to change one submitter’s code and make him endorse your bugs.
To solve this problem, it is recommended that you add a line between the last Signed-off-by header and yours, indicating the nature of your changes.
While there is nothing mandatory about this, it seems like prepending the description with your mail and/or name, all enclosed in square brackets, is noticeable enough to make it obvious that you are responsible for last-minute changes. Example:

Signed-off-by: Random J Developer <random@developer.example.org>
[lucky@maintainer.example.org: struct foo moved from foo.c to foo.h]
Signed-off-by: Lucky K Maintainer <lucky@maintainer.example.org>

References

	Linux kernel documentation - Submitting patches: the essential guide to getting your code into the kernel [https://www.kernel.org/doc/html/latest/process/submitting-patches.html]

SatNOGS Decoders

Kaitai Structs, preprocessors and helper scripts for decoding SatNOGS received data.

Adding a new decoder

	Write the kaitai structure and add it to the ksy folder.

	Naming example:

	Satellite Name (arbitrary): CubeBel-1

	KS filename: cubebel1.ksy

	KS file header: see [1]

	KS compiler output: cubebel1.py

	Python capitalized function name: Cubebel1

	The python module name should match the python function naming rules in PEP8 [https://www.python.org/dev/peps/pep-0008/#id40].

	Add documentation fields in kaitai structure

	Add “doc-ref”, is the source of information about the decoder

	Add -orig-id, is the name of field which is the same with the source of information, “doc-ref”

	At the beginning of kaitai struct after the meta data it is necessary to add, the way that the influxdb value it matches to the kaitai field. For example:

doc: |
 :field influxdb_field: katai_field

doc: |
 :field dest_callsign: ax25_frame.ax25_header.dest_callsign_raw.callsign_ror.callsign

	Add the python class name of your decoder to the list in satnogsdecoders/decoder/__init__.py

__init__.py:

__all__ = [
 [..],
 'Cubebel1',
 [..],
]

[..]
from .cubebel1 import Cubebel1
[..]

[1] cubebel1.ksy:

meta:
 id: cubebel1

Installation in development mode

Within the root directory of this repository run docker-ksc script to compile KSY to Python code (requires Docker):

$./contrib/docker-ksc.sh

The above command will output the compiled files under satnogsdecoders/decoder directory.

Then, install the package from source code directory as usual:

pip install -e .

Helper Scripts

Some helper commands will only be available after installing the package.

Installation

The helper scripts need a few additional dependencies which can be installed via pip:

pip install -r contrib/manage/requirements.txt

Fetch telemetry

To fetch telemetry you will need an API Token. You will have to register yourself on https://db.satnogs.org in order to get it.

Once you have your token create a new file .env in the current directory based on “./contrib/manage/env-dist” and add your token:

SATNOGS_DB_API_TOKEN=1234567890asdfghjkl

$./contrib/manage/fetch_telemetry.py --help
usage: fetch_telemetry.py [-h] [--source SOURCE] [--base_dir BASE_DIR] [--max MAX] norad_id

Fetch and store all telemetry data from a satnogs-db instance for a given satellite.

positional arguments:
 norad_id NORAD ID of the satellite

optional arguments:
 -h, --help show this help message and exit
 --source SOURCE satnogs-db Instance: satnogs, satnogs-dev or sputnix
 --base_dir BASE_DIR Base directory of the telemetry storage
 --max MAX Maximum number of fetched frames. Default: 25

Push telemetry

$./contrib/manage/push_telemetry.py --help
usage: push_telemetry.py [-h] [--target TARGET] [--max MAX] telemetry_filename norad_id_import norad_id_export

Push all telemetry data to the target db instance from a local json dump file for a given satellite.

positional arguments:
 telemetry_filename Filname of the telemetry data json dump
 norad_id_import NORAD ID of the satellite in the data
 norad_id_export NORAD ID of the satellite in the target db instance

optional arguments:
 -h, --help show this help message and exit
 --target TARGET target satnogs-db Instance: satnogs, satnogs-dev or sputnix
 --max MAX Maximum number of frames to be submitted.

Export raw frames

$./contrib/manage/export_raw.py --help
usage: export_raw.py [-h] norad_id source_file satellite_name

Export raw frames from local telemtry storage json files.

positional arguments:
 norad_id NORAD ID of the satellite
 source_file Source telemetry storage file (json)
 satellite_name Satellite name

optional arguments:
 -h, --help show this help message and exit

Decode frame

decode_frame will be available as a command line tool after installing the package.

$ decode_frame --help
usage: decode_frame [-h] decoder_name raw_frame_file

Decode a raw frame with the selected decoder(generated by Kaitai) and print
its json representation.

positional arguments:
 decoder_name name of the decoder (e.g. siriussat)
 raw_frame_file Path to the file containing the raw frame

optional arguments:
 -h, --help show this help message and exit

Fetch frames from network

$./contrib/manage/fetch_frames_from_network.py --help
usage: fetch_frames_from_network.py [-h] norad_id start end target_dir

Fetch all frames received in thespecified timeframe from a given satellite in
satnogs-network (prod) and store themto individual raw files.

positional arguments:
 norad_id NORAD ID of the satellite
 start Start date, YYYY-mm-dd
 end End date, YYYY-mm-dd
 target_dir target directory for the downloaded raw frames

optional arguments:
 -h, --help show this help message and exit

Example Usage

Transfer frames from db-dev to db-dev (duplicating frames…):

$./contrib/manage/fetch_telemetry.py 40967 --source satnogs-dev --max 10 --base_dir ./telemetry/
https://db-dev.satnogs.org/api/telemetry/?satellite=40967
Fetched 25 frames.
Stored in ./telemetry/satnogs-dev/40967/20180927195606_all_telemetry.json

$./contrib/manage/push_telemetry.py ./telemetry/satnogs-dev/40967/20180927195606_all_telemetry.json 40967 40967 --target satnogs-dev --max 3
0 SR1GEO_DEV01-JO73mi 2018-09-20T21:40:24Z
1 SR1GEO_DEV01-JO73mi 2018-09-20T21:40:19Z
2 SR1GEO_DEV01-JO73mi 2018-09-20T21:40:14Z
Exported 3 frames.

Decode a frame by Siriussat:

$ decode_frame siriussat contrib/siriussat/packets/data_219992_2018-08-22T13-46-52
{
 "dest_callsign": "R2ANF ",
 "src_callsign": "RS13S ",
 ...
}

Download frames from satnogs-network (prod instance) for Fox-1A (norad id: 40967) received in the specified timeframe:

$ mkdir fox1a
$./contrib/manage/fetch_frames_from_network.py 40967 2018-10-26T00:00:00 2018-10-26T01:00:00 ./fox1a/
Fetched 45 frames.

Existing decoders

	AAUSAT4 by OZ3RF & DL4PD

	ACRUX-1 by DL4PD

	AMICALSAT by deckbsd

	ARMADILLO by DL4PD

	ASU PHOENIX by DL4PD & deckbsd

	AMSAT FOX DUV by DL4PD

	AX.25 frame decoder by DL4PD

	CAS-4A & CAS-4B by cshields

	CHOMPTT by DL4PD

	CubeBel-1 by DL4PD

	CubeBel-2 by mixaill

	Delfi N3xt by pierros

	Elfin-A & -B by DL4PD

	Entrysat by DL4PD

	GT-1 by dillan1

	Lightsail-2 by DL4PD

	Ops-sat by deckbsd

	Painani by DL4PD

	Polyitan-1 by deckbsd

	QBEE by Ansgar Schmidt

	Siriussat-1 & -2 by kerel

	skCUBE by borispilka & kerel

	Strand-1 by kerel

	TARGIT by dillan1

	TBEX-A/-B by DL4PD

	Unisat-6 by cshields

License

Helper scripts: AGPL-3.0-or-later

How-To generate the Kaitai struct for skCUBE

	Download the documentation: http://www.skcube.sk/wp-content/uploads/2016/06/skcube_data_structures.xlsx

	For each packet type extract the columns Type and Item, seperated by a semicolon into a separate file.

	Use the script skcube_csv2kaitai.py to generate Kaitai structs for one packet type at a time.

The result can be seen here: https://gitlab.com/kerel-fs/satnogs-db/snippets/1748681

How-To generate the Kaitai struct for Strand-1

	Download the documentation: http://www.skcube.sk/wp-content/uploads/2016/06/skcube_data_structures.xlsx

	(abbreviated description) Extract the columns id, channel, i2c_node_address and node_channel into csv files.

	Use the script strand1_csv2kaitai.py to generate a Kaitai struct stub.

 nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/file.png

_static/ajax-loader.gif

_static/minus.png

_static/down.png

_static/up-pressed.png

_static/up.png

_static/plus.png

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/down-pressed.png

